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ABSTRACT

The Inverted Tee (IT) girder bridge system was originally developed in 1996 by the
University of Nebraskiaincoln (UNL) researchersand Nebraska Department of
TransportationNDOT) engineers. This bridgeystem currently accounts for over 110
bridges in Nebraska used for both state highways and local county Edadsasive
longitudinal and transverse deck crackinftave been observed and noted in numerous
bridge inspection reportSince the IT girder brge system is relatively new, limited data
and knowledge exist on its structural performancelaetdhvior. This study evaluates the
IT girder bridge system by conducting twenty field observations as well as recording
accelerometesstrain gauge, and LVDiime historiesandlidar scans for a selected subset
of these bridgeand then shreedimensional finite element analy$i<KEA) was conducted
The field observations included visual inspection for damage and developing deck crack
maps to identify a trend fothe damageSystem identification of the bridge deck and
girders helped investigate the global and local structural responses, respectively.
Operational modal analysis quantified the natural frequencdemping ratios, and
operaional deflected shapesrfthe instrumented IT girder bridges. These results helped
diagnose the reason for the longitudinal deck cracking. The IT girders respond non
uniformly for the first operational deflected shape and independently for higher modes.
Two comparable bridgesamely one slab and one NU girder bridge, were instrumented
to verify and demonstrate that the IT girder behavior is unique. An advgeosgatial
analysis was conducted for the IT girder bridges to develop lidar depth mapsletkhe

and girders elevatis. These depth maps help identify locations of potential water/chloride
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penetration and girders set at various elevations and/or where the deck thickress is

uniform. Live load tests helped quantify the transverse dynamicviomhaef the bridge
girders. Quantifying the transverse dynamic behavior helped validate the source of
longitudinal deck cracking in IT girder bridgeghich was determined to be the differential
deflection between adjacent IT girdefhie FEAanalysis wagonducted to evaluateeh

live load moment and shear distribution factors and compare that to the predicted values
calculated from the AASHTO Standard and LRFD bridge design specifications. The
comparison indicated that the predicted distribution facteese conservative.Also,
interviews with IT bridge producers and contractors were conducted to determine

production and construction advantages and challenges ofithgesystem.



CHAPTER 171 INTRODUCTION

11 PROJECT OVERVIEW

The purpose of this researgmoject is to evaluatéhe strucural serviceability,
durability, and performance of the Inverted Tee (fiiderbridge systemTo accomplish
this task, thebridge property information and cuntanspection reports were collected for
all state and local county girderbridges A well-diversifiedgroup of 20 IT girder bridges
across the sta of Nebraska were selected for visual inspecliem IT girder bridgesyne
slab bridge, andneNU girder bridge were instrumented with accelerometziguantify
the vibrational propertis. These vibrational properties, namely the natural frequencies and
operational deflected shapegreused to investigate the likelihood for cracking in ifhe
girder bridge deck The local dynamic behavior of the IT girder bridge system was
compared tmne bridge for eachlternative systemAn advanced geospatial analysias
performed using lidar scans of 11 IT girder bridgedevelop depth maps of theak and
girder elevationd.ive load tests were conductby instrumentingt IT girder bridgesith
L VDT, & dridges withstrain gaugesand 1 bridge witHidar scans to quantifyghe
transverse dynamic behavior. A finite element analysis was conducted to evatuate th
parameters that impact the live load moment and shear distribution factors fodeT gir
bridges and how they compare to AASHTO Standard and LRFD specificatiimes.
results from thesassessients will help recommend further enhancements thatesrded

to improve thestructural durability and performance of tiegirder bridge system.



1.2 MOTIVATIONS & OBJECTIVES OF RESEARCH

The IT bridge system has a unique design and beneficial construction prdoedure
short to medium spans ranging from 30 to 80.f&éée casiin-place deck acts as the
composite top flange of th& girders. This effiaent use of material reduces the bridge
weight and increases tlspanto-depth ratio The IT girder bridge system is an effective
design whensuperstructuredepth is a onstraint. Since temporary formwork is not
required, the construction process is quidth fewer roadway downtimes and closures.
However, here are several challenges that exist for the relatively new IT girder bridge
system due to the limited performaraaga and knowledg@&his project is an opportunity
to employ stateof-the-art nondestuctive and norcontact testing and assessment
techniques along with the visual inspections. These advanced assessment techniques
include system identification and advangedspatial analysigilizing accelerometer time
histories and lidar scans, respeely. The primary objective t® perform these assessment
techniques to evaluate the structural durability and performance of the IT girder system, as
well as compare the dynamic behavior of the bridges to other competitive systems. T
goal is to identy the deficiencies afhe IT grder bridge system and recommend further

design enhancemertts become even more competitive with alternative designs.

13 PROJECT OUTLINE & SCOPE

The evaluation of the structural durability and performance for the IT girakgebri
system is presented withihe scope of the following chapters and appendices:

Chapter 2 presents a literature review on the history and description of the IT

girder bridge system, system identificatiomodal analysis techniques, and example case
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studes that guide this projecthis chapter also summarizegerviews with IT bridge

producers and contractors

Chapter 3 summarizes the field assessments of the 20 selected IT girder bridges
with representativ@hotos ofcommondamage andraexamplebridgedeck crack This
chapter mentins the likely cause antiime of occurrencdor each type of commonly
observed damage.

Chapter 4 explains the general instrumentation setups, system identification
process, and operational modal analysis techniques usethato thte structural dynamic
properties of the global and local responses for the bridges. This complete process is
elucidatedor one of the instrumented IT girder bridges. The dynamic behavior of this IT
girder bridge is compared to the responsevof¢anparable bridges, namebynesiaband
one NU girder bridge, with similar traffic characteristics. Evaluating these dynamic
properties helps indicate the causes of the commonly observed damage for the IT girder
bridges.

Chapter 5 describeshe advanced gepatial analysis useid develop depth maps
of the deck and girdefsom lidar scans. These depth maps provide the relative deck and
girder elevations for the scanned IT girder bridges.

Chapter6pr esents the instrumentatandldarset up
scans to quantify theansverselynamic behavior for IT girder bridgesder live loads
Quantifying the transverse dynamic behavior bdlassess theotential cause for
longitudinaldeck crackingn IT girder bridges.

Chapter 7 evaluates thdive load moment and shear distribution factors for IT

girder bridges using thresimensional finiteelement analysis (FEA) and AASHTO live
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loads. FEA results were comparedtosepredicted usig AASHTO Standard and LRFD

bridge design specificationshib chapter then performs a parametric study to determine
the effect span length, skew angles, number of lanes loaded, deck slab thickness, and
intermediate diaphragm type have on the structedbpmance of the system.

Chapter 8 summarzes the projectanclusionsandrecommendations as well as
stategpotential future research topics for the IT girder bridge system.

Appendix A contains photos of observed damage for the IT girder bridges that
werefield assessed.

Appendix B consists of the deck crack mafos the IT girder bridges that were
field assessed.

Appendix C detailsthe system identification results for the instrumented bridges.

Appendix D includes the plots from the field assessment amlyor the
instrumented IT girder bridges.

Appendix E contans the deck and girder lidar depth maps for the scanned IT girder
bridges.

Appendix F consists of the LVDT and strain gauge results foritiserumented
bridges.

Appendix G containsthe contractor interview responses.

Appendix H includes plots comparinlBl condition ratingsto the age of the
bridge at the time of ispection and #&ble summarizinghe conditionratings for all IT

girderbridges.



CHAPTER 21 LITERATURE REVIEW

2.1 HISTORY ANDDESCRIPTIONOF THE IT GIRDER BRIDGE SYSTEM

The University of Nebrask&incoln (UNL) researcherand Nebraska Department
of Transportatio(NDOT) engineerriginally developedheIT girder bridge systenm
1996 (Kamel and Tadros, 1996; Jaber, 30T here currently are over 110 IT girder
bridges used for both state highway and local county bridges in Nebfagkae(21).
Most ofthese bridges are located in the eastern part of the state, as illustragefigarth
The bridge system is considered as a type of accelerated bridge construction (ABC), which
provides a competitive design for short to medium spans ranging fron88Gdet. There
are several advantages of the IT girder bridge system compam@teio competitive
systems. A few of the advantages include no required temporary formwork, quick
construction process, shorter road closures, reduced bridge weight, arheffiaterial
usageThe reduced girder weight increases the ease of constrémtitwe IT girder bridge
system, especially for areas not easitgessibldor large cranesAlso, the high spaito-
depth ratio provides an adequate desoyrsuperstructuréridge replacements, especially

when depth is a constraifg.g., hydraulic claance)
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Figure 21: Locations of IT girder bridgaea Nebraskgcourtesy of Google Maps).

The crosssectional properties of the prestres§Edjirders are provided ifable
2.1. Drawings of he dmensions, reinforement and strand layoubr a typical IT-400
girder is displayed ifrigure 22. The IT girder heights range frobh3.3 to 36.9 inches (IT
300 to IT-900). All IT girders have a consistent web wiidf 6.38 inches (162 mm), flange
width of 23.63 inches (600 mm), and flange thickness of 5.50 inches (140 mm). Each girder
has a maximum of 2R 0.5 inch prestressing strandSgure 23 shows an xample IT
girder fomwork and reinforcement schemghe girder spacing ranges from 25 to 37
inches (635 to 940 mmEoncrete with a 28lay compressive strength&000 psi ismost
commonlyused for theyirders

Table 21: Crosssectional properties afie IT girders (NDQ 2014

Girder He(:g)h v V\\/I\ilgttk)l Tr'TifEr?eess C\II"TIS tghe %Lez? Cen(tirno)id** In(ienrgi)a V(\fg}?t;] !
(in) (in) (in)
IT-300 | 13.31 6.38 5.50 23.63 | 178.9 4.50 2,034 186.4
IT-400 | 17.25 6.38 5.50 23.63 | 204.0 5.81 4468 2125
IT-500 | 21.19 6.38 5.50 23.63 | 229.1 7.25 8,331 238.6
IT-600 | 25.13 6.38 5.50 23.63 | 254.2 8.75 13,866 | 264.8
IT-700 | 29.06 6.38 5.50 23.63 | 279.3 10.38 21,293 | 290.9
IT-800 | 33.00 6.38 5.50 23.63 | 304.4 12.06 30,827 | 317.1
IT-900 | 36.94 6.38 5.50 23.63 | 3295 13.75 42,674 | 343.2

* Height is based on the actual geometry and inclutl&-ach notch
** Measured from the bottom of the girder
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DIMENSIONS AND REINFORCING

Figure 22: Drawing of the dimensions, reinforcement, and strand layout for aatylpic
400 girder(courtesy of NDQ).

Figure 23: Example IT girdefomwork and rinforcemer&icheme(courtesy of NDQ).
Before pouring the cash-place dek, stayin-place forms made from % inch
plywood sheets are installeganing between girder to girder, as showrrigure 24.
The casin-place deck is six inches thick with a single reinforcement layetyfocal
highway and local road IT girder bridges. For IT girder bridges omtkestate or with a
42-inch NU rall, the casin-place deck igightinches thick with two reinforcement layers.
The thicker concrete dedkto account for larger bridge ratpacity under a collision (FL

4). The transverse and longitudinal reinforcetis#5 rebar aténch and 16nch spacing,
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respectively. The deck is continuous over the pi€mcrete with a 28ay compressive

strength of 900 psi istypically used forthe deck.

(b)
Figure 24: Stay-in-placeplywoodformsspanningbetweergirders.

Several challengesxist for the relatively new IT girder bridge system due to the
limited performance datand knowledge. Thive load distribution factors have not been
fully explored or determined for the IT girderdge system This is particularly true with
varying span lengths, skew angles, deck thickegsdiaphragm types, girder sizes, and
girder spacingFurthermore, one construction challenge is handling the flexible girders
before the cagh-place deck ipoured. Intermediate concrete or steel diaphragms are
sometimes used to help stabilize the outside girders of the bridge during the construction
process, as illustrated Figure 25. Excessiveransverse and longitudhl deck cracking
has been observed and noted in nuwugridge inspection reports, even at an early age.

The ransvers crackingoccursin the negative moment region over the piersere the
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spars arecontinuous fotthelive load (Ambare and PetermaB006; Larson et al., 2013).

The Kansas DOT introducedlasign update that included poshsioning of the IT girders

to help improve the durability of the bridge (Nayal et al., 2006). A drapeedgmsbning

duct was added to every IT girder stem to dyetiontrol the unpredictable camber and
stresses throtmput the bridge. When the pdsinsioning is applied after the concrete
diaphragms and deck are cured, the transverse cracking in the deck is significantly reduced

over the piers.
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(b)
Figure 25: Drawings of an example intermediate diaphragm layout for an IT girder
bridge: (a) concrete and (b) st¢eburtesy of NDQ).

2.2 SYSTEM IDENTIFICATION AND MODAL ANALYSIS
System identification of the IT girder bridges wiltlan investigating a connection

between the dynamic behavior of the bridges and the poskibleagemechanisms that
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create longitudinal deckracksin the bridge decksSystem identification is the press of

developing a mathematical model based on medsdata from a structure (Peeters and
Roeck, 2001). Accelerometerscord the vibrations of the structure, and this data is used
for system identification. An understanding of structural dynamics areleaometer data
processing is important when perfongisystem identification. Bore (2014) presents a
basic introduction to digital signal processing that can be applied to acceleration time
histories. He and Fu (2001) explain modal analysis in full dateluding its various
applications, mathematics, frgency and time domain analysis methods, and processing
examples orrealworld structures. Experimental modal analysis (EMA) or operational
modal analysis (OMA) is performed to determine the dynamiackexistics of a structure
using frequency or time daain techniques. EMA explores the transfer of the measured
input signal through the structure to the measured output signal. An impulse hammer or
portable shaker is typically used as the input excitati?MA considers only the output
vibrations and assuraé¢he unknown input is random (Brincker and Ventura, 2015). The
method is typically performed on larger structures, such as building or bridges, operating
under ambient conditions excited by live anaavioads.

Modal analysis can be performedthe freqency or time domaimo obtain the
modal properties of a structure, namilg natural frequencies, damping ratios, and mode
shapesA naturalfrequeny is the frequeng of vibration that a structure Wilend towards
andis a function ofthe mass and stiffess distributionsA damping ratio isa decay of
vibration for a given frequency of a system expressed in percent of critical damping.
Damping ratiosare not completely reliable under ambient loads tdutne low level of

excitation. Amode shap#s a rehtive vibration pattern of a structure for a given frequency
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Example mode shapes for an idealized -thrmensional foustory frame structure is

shown inFigure 26.
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Mode Shape 4 @ 7.801 Hz
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Figure 26: Modes shapes in the horizontatlixection degre®f-freedom for an example
two-dimensionafour-story frame.

The peakpicking method is an approximate and quick wagt@¢termine the modal

properties based on the peak value of the fast &owansform (FFT) signal plotsrA&FT

is an algorithm to convert the signal from the time domain into the frequency domain

(Welch, 1967).Figure 27 illustrates an examplef peakpicking frequency domain

analysis fo a structural assessment using ambient vibrations. The frequency domain
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decomposition (FDD) method is commonly performed for EMA to determine estimates of

the modal properties based orosscorrelation spectra (Brincker et al., 2000).

15 T T

10 |- T?[ -

PSD

2 3 4 5 6 7
Freq. (Hz)
Figure 27: Exampleof peakpicking frequency domain analysis

Stochastic Subspace Identification (SSI) is known as the most powerful and reliable
time domainoperational modal analysis technique (Brincker and Anderson, 2006). The
SSI technique is significantly more complicated algorithm that minimizes the error
between the mathematical model and measured system response by adjusting various
parametersHerlufsen et al. (2005) arstructural Vibrations Solutions (2017) introduces
the multipleimplementatios of the SSI techniquelTwo popular implementations atfee
Unweighted Principal Component (SSPC) and the Extended Unweighted Principal
Component (SSUPCX), which generates stabilization diagrams with confidence bounds

and removegotentialmodeswith high values ofuncertainty(Mellinger et al., 2016).

Figure 28 provides an example stabilization diagram utilizing3&UPCX technique.
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Figure 28: Example SSUPCX stabilizaton diagram

2.3 SYSTEM IDENTIFICATION CASE STUDY EXAMPLES

System identificationf civil engineering infrastructueas been a popular research
topic over the pasew decades. Several case studies have applied EMA and OMA methods
for various applicationsral investigations. Khalil et al. (1998) investigated the deck
rehabilitation of the Boone River bridge on lowa State Highway 17 by comparing the
before and after odal properties. Modal analysis was used as a nondestructive evaluation
technique that can based in conjunction with visual inspections for a more effective
bridge assessment. As bridges deteriorate or are retrofitted, the dynamic properties change.
The computed natural frequencies and mode shapes were used to obtain the current
stiffness and s properties of the bridge. Ren et al. (2004) performed eatpyimodal
identification using the peagicking and SSI methods on a steel girder arch bridge. The
ambient vibrations excited by traffic and wind were collected by triaxial accelerometers.

The natural frequencies, damping ratios, and mode shapes were generated for the three
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dimensional motion of the bridge. Cunha and Caetano (2006) implentekk&dn the

Jindo cablestayed bridge and the Norsjo dam using portable shakers and ONt#e on

Heritage Court Tower anthe Guadiana cablstayed bridge

24 INTERVIEWS

Three bridge contractors responded to a questionnaire assessing the performance of
the IT Bridge §stem during constructiom the regional areaCombined the contractors
have completed ovelO IT bridgeswith an average of 8r 4 peryear(all in Nebraska)ln
this report, the contractorodos resVWienses a
compamg IT to slab bridges, they said the total costs of construcrerrelatively
comparableput the IT bridge is faster, easier, and requires a smaller crew to construct.
Accordingto one contractoithe typical three span slab bridge would take apprdeiymna
one month longer to build than the same sized IT girder bridge. Also, IT bridgesare saf
to construct due to not requiring falsework and eliminatagyfall hazards when decking
(excluding exterior girders). They also reduce the need to accessatmevay due to the

longer spans.

Overall, the contractors had positive experiences withridge construction due
to the ease of construction and not needing a large crane due to the lightweight girders. The
main problem the contractors had with IT Iggdconstruction is the deflection and camber
of girders during deck constructio@ne contrator statel that the oveiccamber of IT
girders may cause the deck to be poured thicker than the design plans. Thicker decks are
especially problematic becausee o morecontractorsaidgirder deflection during deck

placement is a problem. For exampmee contractobelieves the thicker-8ich deck is the
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reason the Interstate 80 bridgésver deflected Additionally, the exterior girder

deflection must be moreacefully monitored both during the placement of the deck and
anytime therearemachine loadsiear the edge of the bridge. A suggestion to attempt to
reduce the cost of IT bridge construction is to do a cost analysis trying to reduce the number
of girdersby increasing girder spacing but utilizing larger girders. However, the contractors
say stayn place forms are essential, so if the spacing itaigea lightstayin-placemetal
decking may be required instead of plywood. A suggestion to improve construction is to
minimize the overhang which would reduce the live load impact on the extewer gi
during deck placement. Alsone contractosuggests trying to bring the pickj eyegfor
erection)closer to thenidpoint, so the sling angle is reduced when picking with one crane.
To speed up construction and save morme or morecontractors sggestthat any
intermediate diaphragms be madestg#fel One contractosays thattitakes a crew of-3

people approximately two and a half days for the forming, pouring, and stripping of
concrete whereas a steel diaphragm will take the same group adesvtb completdf
concrete intermediate diaphragms are usede contractorsuggests making the
diaphragms consistent, allowing tolerance in formwork at the base, and allowing them to

be poured before the decketails of contractor responses can henfbin Appendix G.

Also, two bridge producersvere interviewed to get their insightabout the
challenges in th@roduction of IT girders. Table 2.2 summarizes the questions asked to
each producer and their answers. Based on their resptmsgspoducersecommended
eliminating the use of partially bonded top strands and suggesteasimgrgirder spacing

to be more competitive to slab bridges.



Table2.2: Producer Interviews
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Question/ltem

Producer 1

Producer 2

IT Project owners

NDOR, lowa countiegyrivate Kansas

NDOR only

Range of sizes

IT 400-800 (few IT300, no IT900)

IT 400-800 (few IT300, no IT900)

Difference from NU
girder production

Use of 0.5 in. diameter straight strands

No draping, a lot of debonding, and use of t
fully tensioned top strands

Shipping

As many as possible with total weight limit of 45,00
Ib. Challenging when truck is moving backward

As many as possible with total weight limit
45,000 Ib.

Recommendations to
reduce production cos]

Allow using mild reinforcement as alternative to WW

Reduce release strength and debonded str:
eliminate partially bonded top strands

Rejected IT

3, cutting top strands resulted in significant crackin

None

Reasons for less IT
bridges

Not true. More repair than nesonstruction recently

General observation in new bridge
construction

Increasing IT girder

spacing

Good idea that makes it more competitive than slg

bridges

Good idea and can make it more competiti
than slab bridges
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2.5 APPLICATION TO THE PROJECT

The literature reviewhelped establish a plan to successfully guide and ultimately
accomplish this research project. The project goals and achievement strategy were
developed subsequent to the literature review.hi$t@ry anddescriptionof thelT girder
bridge system provided insights on the design goals, construction procedures, and
numerous challenges. The study system identification and modal analysisled in
understanding the multiple techniques of obtaining the madglepties of structures by
using acelerometer time history data. The system identification methods used for this
research project is a combination of the techniques discussedsaystieen identication
case study examplehese case studies demonsttiast the system identification press
is applicable tacivil engineering infrastructurand the results areomprehensibleThe
interviews with the contractoend producersesponsible for building the IT girder bridge
system gave a unique perspectifethee advantages and disadvantagesociated with
construction. They also suggested ways that an IT girder bridge may be able to be built

more efficiently.
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CHAPTER 31 FIELD OBSERVATIONS

3.1 INTRODUCTION

There are over 110 IT girder bridges throughout rdska with mosbf them
located inthe eastern part of the state. Multiple parameters were considered to select a
well-diversified subset of bridges for field observations. These parameters include year
constructed, average daily truck traffic (ADTT), maximum span lengéw stleck rating,
superstructure rating, girder size, deck thickness, and girder spaitgtggrams were
created to help visualize the distribution of data for the Nebraska IT girder bridges during
the field observation selection proceSggure 31 provides a few relevant histograms
indicating the selected bridges for field observation are a divemesentatin of the
entire populationTwenty IT girder bridgeslisted in Table 31, were selected for field
observations. Thischapter provides an overview of commonly found damage and
observations of a recently constructed IT girder bridge.assembly of the photos of
observed damage and the deck crack maps for each bridge are compiled in Appendix A

and AppendixB, respectively.

3.2 COMMON OBSERVATIONS OF DAMAGE

The commonly found damage for these 20 IT girder brigggsouped into five
categories: deck cracking, damaged abutment caps, damaged pier caps, damaged girders,
and cracked bridge rail.able 32 provides a summary of the observations from the bridge
field visits. There are no noticeable relationships between the severity of damage and the

year constructed, IT girder size, maximum span length, nor skew angle.
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Table 31: Bridges selected for field observations.
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. Girder Deck . ) . . ’
oo | comy | S| IO |_spocne | s | J0 | o | B0, M | Y | e | Mgt | ieeeeien g
mm in mm in mm in ) ) °) Deck | Super | Sub
S006 26001 | Fillmore | 1999 | 300 | 11.81| 738 | 29.06 | 150 | 5.91 19 None 3 32.50 45.6 20 71612015 8 8 7
S006 3427 Sarpy 2002 | 300 | 11.81| 730 | 28.75 | 152 | 6.00 19 None 3 40.00 46.3 40 1/6/2016 7 7 8
S009 00888 | Cuming | 2002 | 400 | 15.75| 711 | 28.00 | 152 | 6.00 18 None 3 44.00 42.4 45 5/20/2015 8 8 7
S020 32260 Holt 2012 | 400 | 15.75| 699 | 27.50 | 152 | 6.00 20 C8x18.75 4 46.00 46.3 40 3/24/2015 7 7 7
S034 31644 | Lancaster| 2005 | 400 | 15.75| 724 | 28.50 | 152 | 6.00 42 C8x18.75 3 48.00 99.9 30 2/11/2015 7 9 8
S050 04149 | Johnson | 1997 | 600 | 23.62 | 650 | 25.59 | 150 | 5.91 19 Concrete 3 67.25 41.7 10 7/13/2016 7 8 7
S050 06686 Cass 2007 | 700 | 27.56 | 730 | 28.75 | 152 | 6.00 24 C12x30 3 75.00 58.8 0 6/9/2016 7 8 8
S058 00994 | Howard | 2001 | 300 | 11.81 | 670 | 26.38 | 150 | 5.91 18 None 3 45.00 40.0 0 12/2/2014 6 8 8
S080 40872R| Lancaster| 2010 | 400 | 15.75| 756 | 29.75 | 178 | 7.00 25 C8x18.75 3 53.50 62.8 0 1/29/2015 8 9 9
S080 40927R| Lancaster | 2010 | 400 | 15.75| 756 | 29.75 | 178 | 7.00 25 C8x18.75 3 53.50 62.8 0 1/29/2015 8 9 9
S081 05152L York 1999 | 400 | 15.75| 660 | 25.98 | 150 | 5.91 19 Concrete 3 56.00 40.7 10 12/19/2014 7 8 7
S089 06047 Harlan 2007 | 300 | 11.81| 724 | 28,50 | 152 | 6.00 16 Concrete 3 45.00 38.4 0 4/21/2015 8 9 9
S089 06062 Harlan 2007 | 400 | 15.75| 778 | 30.63 | 152 | 6.00 15 Concrete 6 55.00 36.4 25 4/21/2015 8 9 9
S103 02465 Gage 1999 | 900 | 3543 | 905 | 35.63 | 150 | 5.91 4 Concrete 5 85.00 41.7 0 7/10/2014 7 7 7
S275 18587 | Douglas | 1997 | 500 | 19.69 | 660 | 25.98 | 150 | 5.91 34 Concrete 3 60.00 74.3 0 2/9/2016 7 8 7
SS66C00220 Otoe 2001 | 700 | 27.56 | 740 | 29.13 | 150 | 5.91 15 Concrete 1 80.00 37.7 25 2/11/2015 8 9 8
C002408505| Dawson | 2005 | 600 | 23.63 | 721 | 28.375| 152 | 6.00 13 C8x18.75 1 65.00 30.4 35 10/8/2015 5 9 9
C008504145| Thayer | 2007 | 600 | 23.63 | 737 | 29.00 | 150 | 5.91 12 C10x15.3 3 63.50 30.4 0 11/14/2014 5 5 6
M011022220| Sherman| 2012 | 600 | 23.63 | 721 | 28.375| 152 | 6.00 13 C8x18.75 1 65.00 30.4 15 11/23/2016 6 6 7
C004931110| Johnson | 2017 | 600 | 23.63 | 762 | 30.00 | 152 | 6.00 12 C12x30 4 75.00 275 20 - 9 9 9




Table 32: Summary of the bridge field observations.
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Max. Skew Location
Bridge ID C(Les?rrult-:rted Sl,?;e Liﬁgph A?%Ie - Deck ‘ Abutment Cap Pier Cap Girders Rails
(ft.) Lorgglédkglal Trca:?;::/l((esrse Dé?gg;g' (S) rx/reel 4 | Chipped | Cracked | Damaged | Chipped | Patched | Cracked

S006 26001 1999 300 | 32.50 20 Full length | Partial width 1 1 Yes
S006 34277 2002 300 | 40.00 40 Full length 1 Yes
S009 00888 2002 400 44.00 45 Partial length Yes 2 Yes Yes
S020 32260 2012 400 | 46.00 40 Partial length |  Full width Yes
S034 31644 2005 400 48.00 30 Full length Partial width Yes 1 2 Yes
S050 04149 1997 600 | 67.25 10 Full length Full width 1 1 Yes
S050 06686 2007 700 | 75.00 0 Full length | Partial width 2 1 1 Yes
S058 00994 2001 300 45.00 0 Full length Full width 2 Yes 1 Yes
S080 40872R 2010 400 | 53.50 0 Full length | Partial width Yes 2 Yes
S08040927R 2010 400 53.50 0 Full length Partial width Yes Yes
S081 05152L 1999 400 | 56.00 10 Full length | Partial width Yes Yes
S089 06047 2007 300 45.00 0 Full length Partial width Yes Yes
S089 06062 2007 400 55.00 25 Full length Full width Yes Yes
S103 02465 1999 900 | 85.00 0 Partiallength |  Full width 2 Yes Yes
S275 18587 1997 500 60.00 0 Full length Yes 1 Yes
SS66C00220 2001 700 | 80.00 25 Partial length Yes 2 Yes
C002408505 2005 600 65.00 35 Full length Yes Partially 2 1 Yes
C008504145 2007 600 | 63.50 0 Partiallength Partially 2 Yes
M011022220 2012 600 65.00 15 Fully Yes
C004931110 2017 600 | 75.00 20 Partial width Yes
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3.21 DeckCracking

The deck cracking is documented in an idealized crack map for each bridge. For
example,Figure 3.2shows the deck crack map for bridge S080 40872R. Longitudinal,
transverse, and diagonal cracks are found biT alirder bridges, as observed by visual
assessment. Longitudinal cracksgure 3.3 are found on each of the 20 IT girder bridges
at almost every girder for the full length of the bridge. Despite this common eccarn
IT bridge systems, longitudinal cracking is not commonly found on other types of bridges.
Transverse crack@Figure 3.4 are commonly found over the bridge piers due to the
negative moment. Diagonal crackBigure 3.5 are typically found near the bridge
abutments, particularly in modee to larger skew angleghere was no observable benefit
to the reduction of deck cracking when increasing the deck thicknesssixam eight
inches (for the two interstate highway bridgd@9)ree out of the four county bridges that
were visited had fily or partially gravel covered decks, which is the reason for the low
deck rating of five or six. Deck cracking may be caused by numdaztors. In this case,
the longitudinal deck cracking is speculated to be a cause of the inefficient transverse load

distribution. This hypothesis will be assessed furthermore in Clsajpaed 6
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Figure3.2: Deck crack map for bridge S080 40872R.




(a) (b)

Figure 33: Examples of longitudinal deck cracking

(@) (b)

Figure 34: Examples of transverse deck cracking.
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